Margaret Regan : Using homotopy continuation to solve parametrized polynomial systems in applications
- Graduate/Faculty Seminar,Uploaded Videos ( 1832 Views )Many problems that arise in mathematics, science, and engineering can be formulated as solving a parameterized system of polynomial equations which must be solved for given instances of the parameters. One way to solve these systems is to use a common technique within numerical algebraic geometry called homotopy continuation. My talk will start with background on homotopy continuation and parametrized polynomial systems, followed by applications to problems in computer vision and kinematics. Of these, I will first present a new approach which uses locally adaptive methods and sparse matrix calculations to solve parameterized overdetermined systems in projective space. Examples will be provided in 2D image reconstruction to compare the new methods with traditional approaches in numerical algebraic geometry. Second, I will discuss a new definition of monodromy action over the real numbers which encodes tiered characteristics regarding real solutions. Examples will be given to show the benefits of this definition over a naive extension of the monodromy group (over the complex numbers). In addition, an application in kinematics will be discussed to highlight the computational method and impact on calibration.
Demetre Kazaras:The geometry and topology of positive scalar curvature
- Graduate/Faculty Seminar,Uploaded Videos ( 1663 Views )I will give an informal overview of the history and status of my field. Local invariants of Riemannian metrics are called curvature, the weakest of which is known as "scalar curvature." The study of metrics with positive scalar curvature is very rich with >100 year old connections to General Relativity and smooth topology. Does this geometric condition have topological implications? The answer turns out to be "yes," but mathematicians continue to search for the true heart of the positive scalar curvature conditions.
Yang Li : On the Donaldson-Scaduto conjecture
- Geometry and Topology ( 708 Views )Motivated by G2-manifolds with coassociative fibrations in the adiabatic limit, Donaldson and Scaduto conjectured the existence of associative submanifolds homeomorphic to a three-holed 3-sphere with three asymptotically cylindrical ends in X \times R^3, where X is an A2-type ALE hyperkähler manifold. We prove this conjecture by solving a real Monge-Ampère equation with singular right hand side. The method produces many other asymptotically cylindrical U(1)-invariant special Lagrangians in X \times R^2, where X arises from the Gibbons-Hawking construction. This is joint work in progress with Saman Habibi Esfahani.
Demetre Kazaras : If Ricci is bounded below, then mass is in control!
- Geometry and Topology ( 553 Views )The ADM mass of an isolated gravitational system is a geometric invariant measuring the total mass due to matter and other fields. In a previous work, we showed how to compute this invariant (in 3 spatial dimensions) by studying harmonic functions. Now I'll use this formula to consider the question: How flat is an asymptotically flat manifold with very little total mass? In the presence of a lower bound on Ricci curvature, we make progress on this question and confirm special cases of conjectures made by Ilmanen and Sormani.
Felix Otto : Gergen Lecture - Speaker, Felix Otto
- Gergen Lectures ( 407 Views )In three specific examples, we shall demonstrate how the theory of partial differential equations (PDEs) relates to pattern formation in nature: Spinodal decomposition and the Cahn-Hilliard equation, Rayleigh-B\'enard convection and the Boussinesq approximation, rough crystal growth and the Kuramoto-Sivashinsky equation. These examples from different applications have in common that only a few physical mechanisms, which are modeled by simple-looking evolutionary PDEs, lead to complex patterns. These mechanisms will be explained, numerical simulation shall serve as a visual experiment. Numerical simulations also reveal that generic solutions of these deterministic equations have stationary or self-similar statistics that are independent of the system size and of the details of the initial data. We show how PDE methods, i. e. a priori estimates, can be used to understand some aspects of this universal behavior. In case of the Cahn-Hilliard equation, the method makes use of its gradient flow structure and a property of the energy landscape. In case of the Boussinesq equation, a ``driven gradient flow'', the background field method is used. In case of the Kuramoto-Sivashinsky equation, that mixes conservative and dissipative dynamics, the method relies on a new result on Burgers' equation.
Robert Bryant : The affine Bonnet problem
- Geometry and Topology ( 296 Views )The classical Euclidean problem studied by Bonnet in the 19th century was to determine whether, and in how many ways, a Riemannian surface can be isometrically embedded into Euclidean 3-space so that its mean curvature is a prescribed function. He found that, generically, specifying a metric and mean curvature admitted no solution but that there are special cases in which, not only are there solutions, but there are even 1-parameter families of distinct (i.e., mutually noncongruent) solutions. Much later, these Bonnet surfaces were found to be intimately connected with integrable systems and Lax pairs. In this talk, I will consider the analogous problem in affine geometry: To determine whether, and in how many ways, a surface endowed with a Riemannian metric g and a function H can be immersed into affine 3-space in such a way that the induced Blaschke metric is g and the induced affine mean curvature is H. This affine problem is, in many ways, richer and more interesting than the corresponding Euclidean problem. I will classify the pairs (g,H) that display the greatest flexibility in their solution space and explain what is known about the (suspected) links with integrable systems and Lax pairs.
Robert V. Kohn : A Variational Perspective on Wrinkling Patterns in Thin Elastic Sheets: What sets the patterns seen in geometry-driven wrinkling?
- Gergen Lectures ( 286 Views )The wrinkling of thin elastic sheets is very familiar: our skin
wrinkles, drapes have coarsening folds, and a sheet stretched
over a round surface must wrinkle or fold.
What kind of mathematics is relevant? The stable configurations of a
sheet are local minima of a variational problem with a rather special
structure, involving a nonconvex membrane term (which favors isometry)
and a higher-order bending term (which penalizes curvature). The bending
term is a singular perturbation; its small coefficient is the sheet
thickness squared. The patterns seen in thin sheets arise from energy
minimization -- but not in the same way that minimal surfaces arise
from area minimization. Rather, the analysis of wrinkling is an example
of "energy-driven pattern formation," in which our goal is to understand
the asymptotic character of the minimizers in a suitable limit (as the
nondimensionalized sheet thickness tends to zero).
What kind of understanding is feasible? It has been fruitful to focus
on how the minimum energy scales with sheet thickness, i.e. the "energy
scaling law." This approach entails proving upper bounds and
lower bounds that scale the same way. The upper bounds tend to be
easier, since nature gives us a hint. The lower bounds are more subtle,
since they must be ansatz-free; in many cases, the arguments used to
prove the lower bounds help explain "why" we see particular patterns.
A related but more ambitious goal is to identify the prefactor as well
as the scaling law; Ian Tobasco's striking recent work on geometry-driven
wrinkling has this character.
Lecture 1 will provide an overview of this topic (assuming no background
in elasticity, thin sheets, or the calculus of variations). Lecture 2 will
discuss some examples of tensile wrinkling, where identification of the
energy scaling law is intimately linked to understanding the local
length scale of the wrinkles. Lecture 3 will discuss our emerging
undertanding of geometry-driven wrinkling, where (as Tobasco has
shown) it is the prefactor not the scaling law that explains the
patterns seen experimentally.
Curtis Porter : Spinning Black Holes and CR 3-Folds
- Geometry and Topology ( 276 Views )Some physically significant solutions to Einstein's field equations are spacetimes which are foliated by a family of curves called a shear-free null geodesic congruence (SFNGC). Examples include models of gravitational waves that were recently detected, and rotating black holes. The properties of a SFNGC induce a CR structure on the 3-dimensional leaf space of the foliation. The Kerr Theorem says that the family of metrics associated to a SFNGC contains a conformally flat representative iff the corresponding CR structure is embeddable in a real hyperquadric. Using Cartan's method of moving frames, we can classify which Levi-nondegenerate CR 3-folds are embeddable in the hyperquadric.
Richard Schoen : Positive scalar curvature and connections with relativity
- Gergen Lectures ( 275 Views )In this series of three lectures we will describe positivity conditions on Riemannian metrics including the classical conditions of positive sectional, Ricci, and scalar curvature. We will discuss open problems and recent progress including our recent proof of the differentiable sphere theorem (joint with Simon Brendle). That proof employs the Ricci flow, so we will spend some time explaining that technique. Finally we will discuss problems related to positive scalar curvature including some high dimensional issues which occur in that theory. If time allows we will describe recent progress on black hole topologies. These lectures, especially the first two, are intended for a general audience.
Andrei Zelevinsky : Quivers with potentials, their representation and mutations
- Gergen Lectures ( 272 Views )A quiver is a finite directed graph. A quiver representation assigns a finite-dimensional vector space to each vertex, and a linear map between the corresponding spaces to each arrow. A fundamental role in the theory of quiver representations is played by Bernstein-Gelfand-Ponomarev reflection functors associated to every source or sink of a quiver. In joint work with H. Derksen and J. Weyman (based on an earlier joint work with R. Marsh and M. Reineke) we extend these functors to arbitrary vertices. This construction is based on a framework of quivers with potentials; their representations are quiver representations satisfying relations of a special kind between the linear maps attached to arrows. The motivations for this work come from several sources: superpotentials in physics, Calabi-Yau algebras, and cluster algebras. However, no special knowledge will be assumed in any of these subjects, and the exposition aims to be accessible to graduate students.
Nelia Charalambous : On the $L^p$ Spectrum of the Hodge Laplacian on Non-Compact Manifolds
- Geometry and Topology ( 271 Views )One of the central questions in Geometric Analysis is the interplay between the curvature of the manifold and the spectrum of an operator. In this talk, we will be considering the Hodge Laplacian on differential forms of any order $k$ in the Banach Space $L^p$. In particular, under sufficient curvature conditions, it will be demonstrated that the $L^p\,$ spectrum is independent of $p$ for $1\!\leq\!p\!\leq\! \infty.$ The underlying space is a $C^{\infty}$-smooth non-compact manifold $M^n$ with a lower bound on its Ricci Curvature and the Weitzenb\"ock Tensor. The further assumption on subexponential growth of the manifold is also necessary. We will see that in the case of Hyperbolic space the $L^p$ spectrum does in fact depend on $p.$ As an application, we will show that the spectrum of the Laplacian on one-forms has no gaps on certain manifolds with a pole and on manifolds that are in a warped product form. This will be done under weaker curvature restrictions than what have been used previously; it will be achieved by finding the $L^1$ spectrum of the Laplacian.
Tim Elston : Models and methods for studying cell movement
- CGTP Group Meeting Seminar ( 253 Views )Most cells possess the ability to change morphology or migrate in response
to environmental cues. To understand the molecular mechanisms that drive
cell movement requires a systems-level approach that combines computational
approaches, including mathematical modeling and image analysis tools, with
high-resolution microscopy of living cells. Here we present several
examples for how such an integrated research strategy has been
successfully applied. First, we combine stochastic modeling with novel
biosensors for monitoring the spatiotemporal dynamics of Rho GTPase
activity to investigate the role of RhoG in cell polarization and
migration. Next, mathematical modeling and quantitative image analysis
methods are used to establish the role of cerebral cavernous malformation
(CCM) proteins in vascular tube formation. Finally, we present a novel
computational method for tracking and quantifying changes in cell shape.
Nina Fefferman : Provable Boundaries on Disease Outbreaks in Self-Organizing Social Networks
- CGTP Group Meeting Seminar ( 235 Views )Social contacts provide the backbone over which infectious diseases are transmitted. The dynamic networks that describe the contact patterns of social systems over time make predicting disease outbreaks difficult. In this talk, I'll discuss some computational experiments that show how disease patterns on static networks are observably different from those on dynamic networks. I'll then provide some intuition about how to prove boundary conditions about transmission on networks that explain why and under what circumstances we are likely to see those differences.
Robert Ghrist : Sheaves and Sensors
- Presentations ( 224 Views )This work is motivated by a fundamental problem in sensor networks -- the need to aggregate redundant sensor data across a network. We focus on a simple problem of enumerating targets with a network of sensors that can detect nearby targets, but cannot identify or localize them. We show a clear, clean relationship between this problem and the topology of constructable sheaves. In particular, an integration theory from sheaf theory that uses Euler characteristic as a measure provides a computable, robust, and powerful tool for data aggregation.
Miles M. Crosskey : Mathematics in Magic
- Graduate/Faculty Seminar ( 224 Views )Many simple card tricks rely on mathematical principles and logic. I will be talking about some of these tricks, and the interesting ideas behind them. Hopefully I will have time to show you two or three tricks, and the proof to how they work. I will be using work from Mathematical Magic by Diaconis and Graham. The exciting thing about these tricks is they do not rely upon sleight of hand, and come out looking stunning nonetheless.
Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set
- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.
Johannes Reiter : Minimal intratumoral heterogeneity in untreated cancers
- Mathematical Biology ( 219 Views )Genetic intratumoral heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. I will discuss the extent of genetic heterogeneity within untreated cancers with particular regard to its clinical relevance. While genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment‑naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Last, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These data indicate that the cells within the primary tumors that gave rise to metastases are genetically homogeneous with respect to functional driver gene mutations and suggest that future efforts to develop combination therapies have the capacity to be curative.
Joseph Spivey! : Mapping Class Groups and Moduli Spaces
- Graduate/Faculty Seminar ( 216 Views )There are many different ways to make a compact 2-manifold of genus g into a Riemann surface. In fact, there is an entire space of dimension 3g-3 (when g>1) of possible holomorphic structures. This space is called the moduli space of Riemann surfaces of genus g. We will give a definition of moduli spaces and briefly talk about their construction, starting with the "easy" examples of g=0 and g=1. We will also talk about mapping class groups, which play an important part in the construction of moduli spaces.
Jessica Fintzen : Representations of p-adic groups
- Number Theory ( 215 Views )In the 1990s Moy and Prasad revolutionized p-adic representation theory by showing how to use Bruhat-Tits theory to assign invariants to p-adic representations. The tools they introduced resulted in rapid advancements in both representation theory and harmonic analysis -- areas of central importance in the Langlands program. A crucial ingredient for many results is an explicit construction of (types for) representations of p-adic groups. In this talk I will indicate why, survey what constructions are known (no knowledge about p-adic groups assumed) and present recent developments based on a refinement of Moy and Prasad's invariants.
Shahed Sharif : Class field theory and cyclotomic fields
- Graduate/Faculty Seminar ( 204 Views )We'll undertake a gentle introduction to class field theory by investigating cyclotomic fields, including a proof of quadratic reciprocity. The results we'll discuss complement Les Saper's Grad Faculty seminar talk, though by no means is the latter a prerequisite. As a special treat, I will reveal a completely new, elementary proof of Fermat's Last Theorem.
Chad Schoen : A family of surfaces constructed from genus 2 curves
- Algebraic Geometry ( 198 Views )This talk is about complex analytic geometry, the field of mathematics concerned with complex manifolds and more generally with complex analytic spaces. The "curves" of the title are compact Riemann surfaces and the "surfaces" in the title are compact complex manifolds of dimension 2 over the complex numbers (and hence dimension 4 over the real numbers). The talk will explore the problem of constructing two dimensional complex manifolds by deforming known complex analytic spaces. It will focus on a single example. The talk should be quasi-accessible to anyone who has courses in Riemann surfaces and algebraic topology.
Erika Berenice Roldan Roa : Asymptotic behavior of the homology of random polyominoes
- Probability ( 197 Views )In this talk we study the rate of growth of the expectation of the number of holes (the rank of the first homology group) in a polyomino with uniform and percolation distributions. We prove the existence of linear bounds for the expected number of holes of a polyomino with respect to both the uniform and percolation distributions. Furthermore, we exhibit particular constants for the upper and lower bounds in the uniform distribution case. This results can be extend, using the same techniques, to other polyforms and higher dimensions.
Sarah Koch : Exploring moduli spaces in complex dynamics
- Colloquium ( 197 Views )A major goal in complex dynamics is to understand "dynamical moduli spaces"; that is, conformal conjugacy classes of holomorphic dynamical systems. One of the great successes in this regard is the study of the moduli space of quadratic polynomials; it is isomorphic to $\mathbb C$. This moduli space contains the famous Mandelbrot set, which has been extensively studied over the past 40 years. Understanding other dynamical moduli spaces to the same extent tends to be more challenging as they are often higher-dimensional. In this talk, we will begin with an overview of complex dynamics, focusing on the moduli space of quadratic rational maps, which is isomorphic to $\mathbb C^2$. We will explore this space, finding many interesting objects along the way. Note: special tea at 2:45.