## Curtis Porter : CRash CouRse in CR Geometry

- Graduate/Faculty Seminar,Uploaded Videos ( 2252 Views )CR geometry studies real hypersurfaces in complex vector spaces and their generalizations, CR manifolds. In many cases of interest to complex analysis and PDE, CR manifolds can be considered ``curved versions" of homogeneous spaces according to Elie Cartan’s generalization of Klein’s Erlangen program. Which homogeneous space is the ``flat model" of a CR manifold depends on the Levi form, a tensor named after a mathematician who used it to characterize boundaries of pseudoconvex domains. As in the analytic setting, the Levi form plays a central role in the geometry of CR manifolds, which we explore in relation to their homogeneous models.

## Measure-Theoretic Dvoretzky Theorem and Applications to Data Science

- Probability,Uploaded Videos ( 1451 Views )SEPC 2021 in honor of Elizabeth Meckes. Slides from the talks and more information are available <a href="https://services.math.duke.edu/~rtd/SEPC2021/SEPC2021.html">at this link (here).</a>

## Oliver Tough : The Fleming-Viot Particle System with McKean-Vlasov dynamics

- Probability,Uploaded Videos ( 1332 Views )Quasi-Stationary Distributions (QSDs) describe the long-time behaviour of killed Markov processes. The Fleming-Viot particle system provides a particle representation for the QSD of a Markov process killed upon contact with the boundary of its domain. Whereas previous work has dealt with killed Markov processes, we consider killed McKean-Vlasov processes. We show that the Fleming-Viot particle system with McKean-Vlasov dynamics provides a particle representation for the corresponding QSDs. Joint work with James Nolen.

## Zoe Huang : Motion by mean curvature in interacting particle systems

- Probability,Uploaded Videos ( 1254 Views )There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.

## Alex Hening : Stochastic persistence and extinction

- Probability,Uploaded Videos ( 1224 Views )A key question in population biology is understanding the conditions under which the species of an ecosystem persist or go extinct. Theoretical and empirical studies have shown that persistence can be facilitated or negated by both biotic interactions and environmental fluctuations. We study the dynamics of n interacting species that live in a stochastic environment. Our models are described by n dimensional piecewise deterministic Markov processes. These are processes (X(t), r(t)) where the vector X denotes the density of the n species and r(t) is a finite state space process which keeps track of the environment. In any fixed environment the process follows the flow given by a system of ordinary differential equations. The randomness comes from the changes or switches in the environment, which happen at random times. We give sharp conditions under which the populations persist as well as conditions under which some populations go extinct exponentially fast. As an example we look at the competitive exclusion principle from ecology, which says in its simplest form that two species competing for one resource cannot coexist, and show how the random switching can facilitate coexistence.

## Stochastic and continuum dynamics in intracellular transport

- Graduate/Faculty Seminar,Uploaded Videos ( 1111 Views )The cellular cytoskeleton is made up of protein polymers (filaments) that are essential in proper cell and neuronal function as well as in development. These filaments represent the roads along which most protein transport occurs inside cells. I will discuss several examples where questions about filament-cargo interactions require the development of novel mathematical modeling, analysis, and simulation. Protein cargoes such as neurofilaments and RNA molecules bind to and unbind from cellular roads called microtubules, switching between bidirectional transport, diffusion, and stationary states. Since these transport models can be analytically intractable, we have proposed asymptotic methods in the framework of partial differential equations and stochastic processes which are useful in understanding large-time transport properties. I will discuss a recent project where we use stochastic modeling to understand how filament orientations may influence sorting of cargo in dendrites during neural development and axonal injury.

## Roman Vershynin : Mathematics of synthetic data and privacy

- Probability,Uploaded Videos ( 1110 Views )An emerging way to protect privacy is to replace true data by synthetic data. Medical records of artificial patients, for example, could retain meaningful statistical information while preserving privacy of the true patients. But what is synthetic data, and what is privacy? How do we define these concepts mathematically? Is it possible to make synthetic data that is both useful and private? I will tie these questions to a simple-looking problem in probability theory: how much information about a random vector X is lost when we take conditional expectation of X with respect to some sigma-algebra? This talk is based on a series of papers with March Boedihardjo and Thomas Strohmer.

## Yiming Zhong : Fast algorithm for Radiative transport

- Graduate/Faculty Seminar,Uploaded Videos ( 991 Views )This talk consists of two aspects about solving the radiative transport through the integral formulation. The radiative transport equation has been numerically studied for many years, the equation is difficult to solve due to its high dimensionality and its hyperbolic nature, in recent decades, the computers are equipped with larger memories so it is possible to deal with the full-discretization in phase space, however, the numerical efficiency is quite limited because of many issues, such as iterative scheme, preconditioning, discretization, etc. In this talk, we first discuss about the special case of isotropic scattering and its integral formulation, then walk through the corresponding fast algorithm for it. In the second part, we try to trivially extend the method to anisotropic case, and talk about the method’s limitation and some perspectives in both theory and numerics.

## James Keener : Flexing your Protein muscles: How to Pull with a Burning Rope

- Mathematical Biology ( 727 Views )The segregation of chromosomes during cell division is accomplished by kinetochore machinery that uses depolymerizing microtubules to pull the chromosomes to opposite poles of the dividing cell. While much is known about molecular motors that pull by walking or push by polymerizing, the mechanism of how a pulling force can be achieved by depolymerization is still unresolved. In this talk, I will describe a new model for the depolymerization motor that is used by eukaryotic cells to segregate chromosomes during mitosis. In the process we will explore the use of Huxley-type models (population models) of protein binding and unbinding to study load-velocity curves of several different motor-like proteins.

## Alfio Fabio La Rosa : Translation functors and the trace formula

- Number Theory ( 490 Views )I will propose a way to combine the theory of translation functors with the trace formula to study automorphic representations of connected semisimple anisotropic algebraic groups over the rational numbers whose Archimedean component is a limit of discrete series. I will explain the main ideas of the derivation of a trace formula which, modulo a conjecture on the decomposition of the tensor product of a limit of discrete series with a finite-dimensional representation into basic representations, allows to isolate the non-Archimedean parts of a finite family of C-algebraic automorphic representations containing the ones whose Archimedean component is a given limit of discrete series.

## Jacob Bedrossian : Positive Lyapunov exponents for 2d Galerkin-Navier-Stokes with stochastic forcing

- Applied Math and Analysis ( 436 Views )In this talk we discuss our recently introduced methods for obtaining strictly positive lower bounds on the top Lyapunov exponent of high-dimensional, stochastic differential equations such as the weakly-damped Lorenz-96 (L96) model or Galerkin truncations of the 2d Navier-Stokes equations (joint with Alex Blumenthal and Sam Punshon-Smith). This hallmark of chaos has long been observed in these models, however, no mathematical proof had previously been made for any type of deterministic or stochastic forcing. The method we proposed combines (A) a new identity connecting the Lyapunov exponents to a Fisher information of the stationary measure of the Markov process tracking tangent directions (the so-called "projective process"); and (B) an L1-based hypoelliptic regularity estimate to show that this (degenerate) Fisher information is an upper bound on some fractional regularity. For L96 and GNSE, we then further reduce the lower bound of the top Lyapunov exponent to proving that the projective process satisfies Hörmander's condition. I will also discuss the recent work of Sam Punshon-Smith and I on verifying this condition for the 2d Galerkin-Navier-Stokes equations in a rectangular, periodic box of any aspect ratio using some special structure of matrix Lie algebras and ideas from computational algebraic geometry.

## Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.

- Geometry and Topology,Uploaded Videos ( 315 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.

## Sam Stechmann : Clouds, climate, and extreme precipitation events: Asymptotics and stochastic

- Presentations ( 298 Views )Clouds and precipitation are among the most challenging aspects of weather and climate prediction. Moreover, our mathematical and physical understanding of clouds is far behind our understanding of a "dry" atmospheric where water vapor is neglected. In this talk, in working toward overcoming these challenges, we present new results on clouds and precipitation from two perspectives: first, in terms of the partial differential equations (PDEs) for atmospheric fluid dynamics, and second, in terms of stochastic models. A new asymptotic limit will be described, and it leads to new PDEs for a precipitating version of the quasi-geostrophic equations, now including phase changes of water. Also, a new energy will be presented for an atmosphere with phase changes, and it provides a generalization of the quadratic energy of a "dry" atmosphere. Finally, it will be shown that the statistics of clouds and precipitation can be described by stochastic differential equations and stochastic PDEs. As one application, it will be shown that, under global warming, the most significant change in precipitation statistics is seen in the largest events -- which become even larger and more probable -- and the distribution of event sizes conforms to the stochastic models.

## Laszlo Lovasz : An informal conversation.

- Gergen Lectures ( 298 Views )For the third Gergen Lecture, Professor Laszlo will offer an informal conversation with interested students and faculty. This may include answering questions regarding prior lectures, such as details and proofs. He may also state open problems.

## Christopher Hacon : Birational geometry in characteristic $p>5$

- Gergen Lectures ( 285 Views )After the recent exciting progress in understanding the geometry of algebraic varieties over the complex numbers, it is natural to try to understand the geometry of varieties over an algebraically closed field of characteristic $p>0$. Many technical issues arise in this context. Nevertheless, there has been much recent progress. In particular, the MMP was established for 3-folds in characteristic $p>5$ by work of Birkar, Hacon, Xu and others. In this talk we will discuss some of the challenges and recent progress in this active area.

## Nelia Charalambous : On the $L^p$ Spectrum of the Hodge Laplacian on Non-Compact Manifolds

- Geometry and Topology ( 271 Views )One of the central questions in Geometric Analysis is the interplay between the curvature of the manifold and the spectrum of an operator. In this talk, we will be considering the Hodge Laplacian on differential forms of any order $k$ in the Banach Space $L^p$. In particular, under sufficient curvature conditions, it will be demonstrated that the $L^p\,$ spectrum is independent of $p$ for $1\!\leq\!p\!\leq\! \infty.$ The underlying space is a $C^{\infty}$-smooth non-compact manifold $M^n$ with a lower bound on its Ricci Curvature and the Weitzenb\"ock Tensor. The further assumption on subexponential growth of the manifold is also necessary. We will see that in the case of Hyperbolic space the $L^p$ spectrum does in fact depend on $p.$ As an application, we will show that the spectrum of the Laplacian on one-forms has no gaps on certain manifolds with a pole and on manifolds that are in a warped product form. This will be done under weaker curvature restrictions than what have been used previously; it will be achieved by finding the $L^1$ spectrum of the Laplacian.

## Max Xu : Random multiplicative functions and applications

- Probability ( 262 Views )Random multiplicative functions are probabilistic models for multiplicative arithmetic functions, such as Dirichlet characters or the Liouville function. In this talk, I will first quickly give an overview of the area, and then focus on some of the recent works on proving central limit theorems, connections to additive combinatorics, as well as some other deterministic applications. Part of the talk is based on joint work with Soundararajan, with Harper and Soundararajan (in progress) and with Angelo and Soundararajan (in progress).

## Sharon Lubkin : Notochord eccentricity and its relation to cell packing

- Mathematical Biology ( 252 Views )The notochord, the defining feature of chordates, is a pressurized tube which actuates elongation of the chordate embryo. The zebrafish notochord consists of large vacuolated cells surrounded by a thin sheath. We characterized the patterns of the cells’ packing, and their relationship to the known regular patterns from the study of foams, and irregular patterns in a gel bead system. Disruption of the wild type packing pattern leads to developmental defects. We characterize the bifurcations between the relevant regular patterns in terms of nondimensional geometrical and mechanical ratios, and suggest an important developmental role for the eccentric "staircase" pattern.

## Daniel Lew : Modeling the effect of vesicle traffic on polarity establishment in yeast

- Mathematical Biology ( 231 Views )There are two generally accepted models for the cell biological positive feedback loops that allow yeast cells to break symmetry and establish an axis of polarity. Both have been subjects of published mathematical analyses. Here I will argue that the models used to support a vesicle trafficking model incorporated a simplifying assumption that seemed innocuous but in fact was critical to their success. The assumption is not physically plausible, and its removal means that the model fails. I will show how changing other assumptions can make the model work, but there is no experimental support for those changes. And without them, the vesicle trafficking model perturbs polarity, rather than establishing polarity

## Ali Altug : Beyond Endoscopy via the Trace Formula

- Number Theory ( 230 Views )In his recent paper,\Beyond Endoscopy", Langlands proposed an approach to (ultimately) attack the general functoriality conjectures by means of the trace formula. For a (reductive algebraic) group G over a global field F and a representation of its L-group, the strategy, among other things, aims at detecting those automorphic representations of G for which the L-function, L(s;\pi ;\rho ), has a pole at s = 1. The method suggested using the the trace formula together with an averaging process to capture these poles. In this talk we will start by recalling the functoriality conjectures and brie y describe the method suggested by Langlands. Then, specializing on the group GL(2) we will discuss some recent work on Beyond Endoscopy. More precisely, we will discuss the elliptic part of the trace formula and the analytic problems caused by the volumes of tori, singularities of orbital integrals and the non-tempered terms. We will then describe how one can use an approximate functional equation in the trace formula to rewrite the elliptic part which resolves these issues. Finally, we will talk about applications of the resulting formula.

## Brian Krummel : Higher codimension relative isoperimetric inequality outside a convex set

- Geometry and Topology ( 223 Views )We consider an isoperimetric inequality for area minimizing submanifolds $R$ lying outside a convex body $K$ in $\mathbb{R}^{n+1}$. Here $R$ is an $(m+1)$-dimensional submanifold whose boundary consists of a submanifold $T$ in $\mathbb{R}^{n+1} \setminus K$ and a free boundary (possibly not rectifiable) along $\partial K$. An isoperimetric inequality outside a convex body was previously proven by Choe, Ghomi, and Ritore in the codimension one setting where $m = n$. We extend their result to higher codimension. A key aspect of the proof are estimates on the concentration of mass of $T$ and $R$ near $\partial K$.

## Jessica Fintzen : Representations of p-adic groups

- Number Theory ( 215 Views )In the 1990s Moy and Prasad revolutionized p-adic representation theory by showing how to use Bruhat-Tits theory to assign invariants to p-adic representations. The tools they introduced resulted in rapid advancements in both representation theory and harmonic analysis -- areas of central importance in the Langlands program. A crucial ingredient for many results is an explicit construction of (types for) representations of p-adic groups. In this talk I will indicate why, survey what constructions are known (no knowledge about p-adic groups assumed) and present recent developments based on a refinement of Moy and Prasad's invariants.

## Omer Offen : On the distinction problem of parabolically induced representations for Galois symmetric pairs

- Number Theory ( 211 Views )Let G be the group of rational points of a linear algebraic group over a local field. A representation of G is distinguished by a subgroup H if it admits a non-zero H-invariant linear form. A Galois symmetric pair (G,H) is such that H=Y(F) and G=Y(E) where E/F is a quadratic extension of local fields and Y is a reductive group defined over F. In this talk we show that for a Galois symmetric pair, often the necessary condition for H-distinction of a parabolically induced representation, emerging from the geometric lemma of Berenstein-Zelevinsky, are also sufficient. In particular, we obtain a characterization of H-distinguished representations induced from cuspidal in terms of distinction of the inducing data. We explicate these results further when Y is a classical group and point out some global applications for Galois distinguished automorphic representations of SO(2n+1). This is joint work with Nadir Matringe.