Quicklists
public 01:44:53

Shankar Bhamidi : Flows, first passage percolation and random disorder in networks

  -   Probability ( 206 Views )

Consider a connected network and suppose each edge in the network has a random positive edge weight. Understanding the structure and weight of the shortest path between nodes in the network is one of the most fundamental problems studied in modern probability theory and goes under the name first passage percolation. It arises as a fundamental building block in many interacting particle system models such as the spread of epidemics on networks. To a large extent such problems have been only studied in the context of the n-dimensional lattice. In the modern context these problems take on an additional significance with the minimal weight measuring the cost of sending information while the number of edges on the optimal path (hopcount) representing the actual time for messages to get between vertices in the network. Given general models of random graphs with random edge costs, can one develop techniques to analyze asymptotics of functionals of interest which are robust to the model formulation? The aim of this talk is to describe a heuristic based on continuous time branching processes which gives very easily, a wide array of asymptotic results for random network models in terms of the Malthusian rate of growth and the stable age distribution of associated branching process. These techniques allow us to solve not only first passage percolation problems rigorously but also understand functionals such as the degree distribution of shortest path trees, congestion across edges as well as asymptotics for “betweeness centrality” a concept of crucial interest in social networks, in terms of Cox processes and extreme value distributions. These techniques also allow one to exactly solve models of “weak disorder” in the context of the stochastic mean field model of distance, a model of great interest in probabilistic combinatorial optimization.

public 19:55

Top Chongchitmate : PRUV Talks

  -   Undergraduate Seminars ( 212 Views )

public 01:34:51

Djordje Minic : String theory and non-equilibrium physics

  -   String Theory ( 229 Views )

public 01:34:52

Xiang Cheng : Physics Colloquium

  -   Physics ( 184 Views )

public 01:39:36

Pedro Saenz : Spin lattices of walking droplets

  -   Nonlinear and Complex Systems ( 229 Views )

Understanding the self-organization principles and collective dynamics of non-equilibrium matter remains a major challenge despite considerable progress over the last decade. In this talk, I will introduce a hydrodynamic analog system that allows us to investigate simultaneously the wave-mediated self-propulsion and interactions of effective spin degrees of freedom in inertial and rotating frames. Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-propelled through a resonant interaction with their own guiding wave fields. A walking droplet, or `walker, may be trapped by a submerged circular well at the bottom of the fluid bath, leading to a clockwise or counter-clockwise angular motion centered at the well. When a collection of such wells is arranged in a 1D or 2D lattice geometry, a thin fluid layer between wells enables wave-mediated interactions between neighboring walkers. Through experiments and mathematical modeling, we demonstrate the spontaneous emergence of coherent droplet rotation dynamics for different types of lattices. For sufficiently strong pair-coupling, wave interactions between neighboring droplets may induce local spin flips leading to ferromagnetic or antiferromagnetic order. Transitions between these two forms of order can be controlled by tuning the lattice parameters or by imposing a Coriolis force mimicking an external magnetic field. More generally, our results reveal a number of surprising parallels between the collective spin dynamics of wave-driven droplets and known phases of classical condensed matter systems. This suggests that our hydrodynamic analog system can be used to explore universal aspects of active matter and wave-mediated particle interactions, including spin-wave propagation and topologically protected dynamics far from equilibrium.

public 01:34:03

Jer-Chin (Luke) Chuang : TBA

  -   Graduate/Faculty Seminar ( 135 Views )

public 01:39:44

Bob Behringer : TBA

  -   Nonlinear and Complex Systems ( 142 Views )