Quicklists
public 01:34:50

Guillaume Bal : Some convergence results in equations with random coefficients

  -   Applied Math and Analysis ( 102 Views )

The theory of homogenization for equations with random coefficients is now quite well-developed. What is less studied is the theory for the correctors to homogenization, which asymptotically characterize the randomness in the solution of the equation and as such are important to quantify in many areas of applied sciences. I will present recent results in the theory of correctors for elliptic and parabolic problems and briefly mention how such correctors may be used to improve reconstructions in inverse problems. Homogenized (deterministic effective medium) solutions are not the only possible limits for solutions of equations with highly oscillatory random coefficients as the correlation length in the medium converges to zero. When fluctuations are sufficiently large, the limit may take the form of a stochastic equation and stochastic partial differential equations (SPDE) are routinely used to model small scale random forcing. In the very specific setting of a parabolic equation with large, Gaussian, random potential, I will show the following result: in low spatial dimensions, the solution to the parabolic equation indeed converges to the solution of a SPDE, which however needs to be written in a (somewhat unconventional) Stratonovich form; in high spatial dimension, the solution to the parabolic equation converges to a homogenized (hence deterministic) equation and randomness appears as a central limit-type corrector. One of the possible corollaries for this result is that SPDE models may indeed be appropriate in low spatial dimensions but not necessarily in higher spatial dimensions.

public 01:34:46

Andrea Watkins : TBD

  -   Graduate/Faculty Seminar ( 100 Views )

TBD

public 01:34:46

Katrin Wehrheim : The symplectic category: correspondences, quilts, and topological applications

  -   Geometry and Topology ( 103 Views )

A 'correspondence' between two manifolds is a submanifold in the product. This generalizes the notion of a map (whose graph is a correspondence) ... and is of little use in general since the composition of correspondences, though naturally defined, can be highly singular.

Lagrangian correspondences between symplectic manifolds however are highly useful (and will be defined carefully). They were introduced by Weinstein in an attempt to build a symplectic category that has morphisms between any pair of symplectic manifolds (not just symplectomorphic pairs).

In joint work with Chris Woodward we define such a cateory, in which all Lagrangian correspondences are composable morphisms. We extend it to a 2-category by constructing a Floer homology for generalized Lagrangian correspondences. One of the applications is a general prescription for constructing topological invariants. We consider e.g. 3-manifolds or links as morphisms (cobordisms or tangles) in a topological category. In order to obtain a topological invariant from our generalized Floer homology, it suffices to

(i) decompose morphisms into simple morphisms (e.g. by cutting between critical levels of a Morse function)

(ii) associate to the objects and simple morphisms smooth symplectic manifolds and Lagrangian correspondences between them (e.g. using moduli spaces of bundles or representations)

(iii) check that the moves between different decompositions are associated to 'good' geometric composition of Lagrangian correspondences

public 01:34:03

Jer-Chin (Luke) Chuang : TBA

  -   Graduate/Faculty Seminar ( 135 Views )

public 01:34:38

Stuart Kauffman : The Open Universe

  -   Number Theory ( 128 Views )

Laplace gave the simplest early statement of reductionism. His Demon, if supplied with the positions and momenta of all the particles in the universe, could, using Newton's laws, calculate the entire future and past of the universe. Add fields, quantum mechanics, and General Relativity and you have, roughly, modern physics. There are four features to Laplace's reductionism: (I) Everything that happens is deterministic, called into question a century later by quantum mechanics and the familiar Copenhagen interpretation and Born rule. (ii) All that is ontologically real are "nothing but" particles in motion. (iii) All that happens in the universe is describable by universal laws. (iv) There exists at least one language able to describe all of reality. Quantum mechanics is evidence against (i). I will argue that biological evolution, the coming into existence in the universe of hearts and humming birds co-evolving with the flowers that feed them and that they pollenate, cannot be deduced or simulated from the basic laws of physics. In Weinberg's phrase, they are not entailed by the laws of physics. I will then claim that at levels above the atom, the universe will never make all possible proteins length 200 amino acids, all possible organisms, or all possible social systems. The universe is indefinitely open upwards in complexity. More, proteins, organisms, and social systems are ontologically real, not just particles in motion. Most radically, I will contest (iii). I will try to show that we cannot pre-state Darwinian pre-adaptations, where a pre-adaptation is a feature of an organism of no use in the current selective environment, but of use in a different environment, hence selected for a novel function. Swim bladders are an example. Let me define the "adjacent possible" of the biosphere. Once there were the lung fish that gave rise to swim bladders, swim bladders were in the adjacent possible of the biosphere. Before there were multi-celled organisms, swim bladders were not in the adjacent possible of the biosphere. What I am claiming is that we cannot pre-state the adjacent possible of the biosphere. How could we pre-state the selective conditions? How could we pre-specify the features of one or several organisms that might become pre-adaptations? How could we know that we had completed the list? The implications are profound, if true. First, we can make no probability statement about pre-adaptations, for we do not know the sample space, so can formulate no probability measure. Most critically, if a natural law is a compact description before hand and afterward of the regularities of a process, then there can be no natural law sufficient to describe the emergence of swim bladders. Thus, the unfolding of the universe is partially lawless! This contradicts our settled convictions since Descartes, Galileo, Newton, Einstein and Schrödinger. It says that (iii) is false. In place of law is a ceaseless creativity, a self consistent self construction of the biosphere, the economy, our cultures, partially beyond law. Were reductionism sufficient, the existence of swim bladders in the universe would be entailed by physical law, hence "explained". But it appears that physics, as stated, is not sufficient in its reductionist version. Then we must explain the existence in the universe of swim bladders and humming birds pollenating flowers that feed them, on some different ground. We need a post-reductionist science. Autocatalytic mutualisms of organisms, the biosphere, and much of the economy, may be part of the explanation we seek. In turn this raises profound questions about how causal systems can coordinate their behaviors, let alone the role of energy, work, power, power efficiency, in the self-consistent construction of a biosphere. There is a lot to think about.