Quicklists
public 01:34:38

Stuart Kauffman : The Open Universe

  -   Number Theory ( 128 Views )

Laplace gave the simplest early statement of reductionism. His Demon, if supplied with the positions and momenta of all the particles in the universe, could, using Newton's laws, calculate the entire future and past of the universe. Add fields, quantum mechanics, and General Relativity and you have, roughly, modern physics. There are four features to Laplace's reductionism: (I) Everything that happens is deterministic, called into question a century later by quantum mechanics and the familiar Copenhagen interpretation and Born rule. (ii) All that is ontologically real are "nothing but" particles in motion. (iii) All that happens in the universe is describable by universal laws. (iv) There exists at least one language able to describe all of reality. Quantum mechanics is evidence against (i). I will argue that biological evolution, the coming into existence in the universe of hearts and humming birds co-evolving with the flowers that feed them and that they pollenate, cannot be deduced or simulated from the basic laws of physics. In Weinberg's phrase, they are not entailed by the laws of physics. I will then claim that at levels above the atom, the universe will never make all possible proteins length 200 amino acids, all possible organisms, or all possible social systems. The universe is indefinitely open upwards in complexity. More, proteins, organisms, and social systems are ontologically real, not just particles in motion. Most radically, I will contest (iii). I will try to show that we cannot pre-state Darwinian pre-adaptations, where a pre-adaptation is a feature of an organism of no use in the current selective environment, but of use in a different environment, hence selected for a novel function. Swim bladders are an example. Let me define the "adjacent possible" of the biosphere. Once there were the lung fish that gave rise to swim bladders, swim bladders were in the adjacent possible of the biosphere. Before there were multi-celled organisms, swim bladders were not in the adjacent possible of the biosphere. What I am claiming is that we cannot pre-state the adjacent possible of the biosphere. How could we pre-state the selective conditions? How could we pre-specify the features of one or several organisms that might become pre-adaptations? How could we know that we had completed the list? The implications are profound, if true. First, we can make no probability statement about pre-adaptations, for we do not know the sample space, so can formulate no probability measure. Most critically, if a natural law is a compact description before hand and afterward of the regularities of a process, then there can be no natural law sufficient to describe the emergence of swim bladders. Thus, the unfolding of the universe is partially lawless! This contradicts our settled convictions since Descartes, Galileo, Newton, Einstein and Schrödinger. It says that (iii) is false. In place of law is a ceaseless creativity, a self consistent self construction of the biosphere, the economy, our cultures, partially beyond law. Were reductionism sufficient, the existence of swim bladders in the universe would be entailed by physical law, hence "explained". But it appears that physics, as stated, is not sufficient in its reductionist version. Then we must explain the existence in the universe of swim bladders and humming birds pollenating flowers that feed them, on some different ground. We need a post-reductionist science. Autocatalytic mutualisms of organisms, the biosphere, and much of the economy, may be part of the explanation we seek. In turn this raises profound questions about how causal systems can coordinate their behaviors, let alone the role of energy, work, power, power efficiency, in the self-consistent construction of a biosphere. There is a lot to think about.

public 01:39:40

Frederic Lechenault : Experimental investigation of equilibration properties in model granular subsystems

  -   Nonlinear and Complex Systems ( 168 Views )

We experimentally investigate the statistical features of the stationary states reached by two idealized granular liquids able to exchange volume. The system consists in two binary mixtures of the same number of soft disks, hence covering the same area, but with different surface properties. The disks sit on a horizontal air table, which provides ultra low friction at the cell bottom, and are separated by a mobile wall. Energy is injected in the system by means of an array of randomly activated coil bumpers standing as the edges of the cell. Due to the energy injection, the system acts like a slow liquid and eventually jams at higher packing fraction. We characterize the macroscopic states by studying the motion of the piston. We find that its average position is different from one half, and a non monotonic function of the overall packing fraction, which reveals the crucial role played by the surface properties in the corresponding density of states. We then study the bulk statistics of the packing fraction and the dynamics in each subsystem. We find that the measured quantities do not equilibrate, and become dramatically different as the overall packing fraction is increased beyond the onset of supercooling. However, the local fluctuations of the packing fraction are uniquely determined by its average, and hence independent of the interaction between disks. We then focus on the mixing properties of such an assembly. We characterize mixing by computing the topological entropy of the braids formed by the stationary trajectories of the grains at each pressure. This quantity is shown to be well defined, very sensitive to onset of supercooling, reflecting the dynamical arrest of the assembly, and to equilibrate in the two subsystems. Joint work with Karen Daniels.

public 01:14:36

Andrew J. Bernoff : Domain Relaxation in Langmuir Films

  -   Applied Math and Analysis ( 132 Views )

We report on an experimental and theoretical study of a molecularly thin polymer Langmuir layers on the surface of a Stokesian subfluid. Langmuir layers can have multiple phases (fluid, gas, liquid crystal, isotropic or anisotropic solid); at phase boundaries a line tension force is observed. By comparing theory and experiment we can estimate this line tension. We first consider two co-existing fluid phases; specifically a localized phase embedded in an infinite secondary phase. When the localized phase is stretched (by a transient stagnation flow), it takes the form of a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape relaxes to the minimum energy configuration of a circular domain. The tether is never observed to rupture, even when it is more than a hundred times as long as it is thin. We model these experiments by taking previous descriptions of the full hydrodynamics (primarily those of Stone & McConnell and Lubensky & Goldstein), identifying the dominant effects via dimensional analysis, and reducing the system to a more tractable form. The result is a free boundary problem where motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. The problem has a boundary integral formulation which allows us to numerically simulate the tether relaxation; comparison with the experiments allows us to estimate the line tension in the system. We also report on incorporating dipolar repulsion into the force balance and simulating the formation of "labyrinth" patterns.

public 01:34:09

Sridhar Raghavachari : TBA

  -   Graduate/Faculty Seminar ( 127 Views )

public 01:14:39

Lucy Zhang : Modeling and Simulations of Fluid and Deformable-Structure Interactions in Bio-Mechanical Systems

  -   Applied Math and Analysis ( 154 Views )

Fluid-structure interactions exist in many aspects of our daily lives. Some biomedical engineering examples are blood flowing through a blood vessel and blood pumping in the heart. Fluid interacting with moving or deformable structures poses more numerical challenges for its complexity in dealing with transient and simultaneous interactions between the fluid and solid domains. To obtain stable, effective, and accurate solutions is not trivial. Traditional methods that are available in commercial software often generate numerical instabilities.

In this talk, a novel numerical solution technique, Immersed Finite Element Method (IFEM), is introduced for solving complex fluid-structure interaction problems in various engineering fields. The fluid and solid domains are fully coupled, thus yield accurate and stable solutions. The variables in the two domains are interpolated via a delta function that enables the use of non-uniform grids in the fluid domain, which allows the use of arbitrary geometry shapes and boundary conditions. This method extends the capabilities and flexibilities in solving various biomedical, traditional mechanical, and aerospace engineering problems with detailed and realistic mechanics analysis. Verification problems will be shown to validate the accuracy and effectiveness of this numerical approach. Several biomechanical problems will be presented: 1) blood flow in the left atrium and left atrial appendage which is the main source of blood in patients with atrial fibrillation. The function of the appendage is determined through fluid-structure interaction analysis, 2) examine blood cell and cell interactions under different flow shear rates. The formation of the cell aggregates can be predicted when given a physiologic shear rate.

public 01:14:39

Elizabeth L. Bouzarth : Modeling Biologically Inspired Fluid Flow Using RegularizedSingularities and Spectral Deferred Correction Methods

  -   Applied Math and Analysis ( 146 Views )

The motion of primary nodal cilia present in embryonic development resembles that of a precessing rod. Implementing regularized singularities to model this fluid flow numerically simulates a situation for which colleagues have exact mathematical solutions and experimentalists have corresponding laboratory studies on both the micro- and macro-scales. Stokeslets are fundamental solutions to the Stokes equations, which act as external point forces when placed in a fluid. By strategically distributing regularized Stokeslets in a fluid domain to mimic an immersed boundary (e.g., cilium), one can compute the velocity and trajectory of the fluid at any point of interest. The simulation can be adapted to a variety of situations including passive tracers, rigid bodies and numerous rod structures in a fluid flow generated by a rod, either rotating around its center or its tip, near a plane. The exact solution allows for careful error analysis and the experimental studies provide new applications for the numerical model. Spectral deferred correction methods are used to alleviate time stepping restrictions in trajectory calculations. Quantitative and qualitative comparisons to theory and experiment have shown that a numerical simulation of this nature can generate insight into fluid systems that are too complicated to fully understand via experiment or exact numerical solution independently.

public 01:14:39

Ralph Smith : Model Development and Control Design for High Performance Nonlinear Smart Material Systems

  -   Applied Math and Analysis ( 141 Views )

High performance transducers utilizing piezoceramic, electrostrictive, magnetostrictive or shape memory elements offer novel control capabilities in applications ranging from flow control to precision placement for nanoconstruction. To achieve the full potential of these materials, however, models, numerical methods and control designs which accommodate the constitutive nonlinearities and hysteresis inherent to the compounds must be employed. Furthermore, it is advantageous to consider material characterization, model development, numerical approximation, and control design in concert to fully exploit the novel sensor and actuator capabilities of these materials in coupled systems.

In this presentation, the speaker will discuss recent advances in the development of model-based control strategies for high performance smart material systems. The presentation will focus on the development of unified nonlinear hysteresis models, inverse compensators, reduced-order approximation techniques, and nonlinear control strategies for high precision or high drive regimes. The range for which linear models and control methods are applicable will also be outlined. Examples will be drawn from problems arising in structural acoustics, high speed milling, deformable mirror design, artificial muscle development, tendon design to minimize earthquake damage, and atomic force microscopy.