Quicklists
Javascript must be enabled

Sorin Mitran : Cytoskeleton multiscale model

One of the challenges in biology is relating biochemical reactions that occur at the protein nanoparticle size of 1-100 nm to large scale effects on the cell or tissue scale of 0.01-10 mm. The cytoskeleton is a remarkable example with actin polymerization/depolymerization leading to locomotion, metastasis or apoptosis. This talk presents a recently developed multiscale model that captures large-scale effects produced by changes in biochemical reactions. The model is a computational algorithm that determines effective continuum properties of a homogenized cytoskeleton model by concurrent microscopic simulation. Concepts from information theory and optimal transport are applied to link disparate scales in a computationally efficient manner. One of the interesting aspects of this approach is the combination of standard computational modeling techniques (finite volume, numerical stochastic ODEs) with statistical concepts and learning theory.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video