Sorin Mitran : Cytoskeleton multiscale model
One of the challenges in biology is relating biochemical reactions that occur at the protein nanoparticle size of 1-100 nm to large scale effects on the cell or tissue scale of 0.01-10 mm. The cytoskeleton is a remarkable example with actin polymerization/depolymerization leading to locomotion, metastasis or apoptosis. This talk presents a recently developed multiscale model that captures large-scale effects produced by changes in biochemical reactions. The model is a computational algorithm that determines effective continuum properties of a homogenized cytoskeleton model by concurrent microscopic simulation. Concepts from information theory and optimal transport are applied to link disparate scales in a computationally efficient manner. One of the interesting aspects of this approach is the combination of standard computational modeling techniques (finite volume, numerical stochastic ODEs) with statistical concepts and learning theory.
- Category: Mathematical Biology
- Duration: 01:29:49
- Date: September 2, 2011 at 11:55 AM
- Views: 99
- Tags: seminar, Mathematical Biology Seminar
0 Comments