Quicklists
Javascript must be enabled

Andrej Zlatos : On Universal Mixers

The problem of mixing via incompressible flows is classical and rich with connections to several branches of analysis including PDE, ergodic theory, and topological dynamics. In this talk I will discuss some recent developments in the area and then present a construction of universal mixers - incompressible flows that asymptotically mix arbitrarily well general solutions to the corresponding transport equation - in all dimensions. This mixing is in fact exponential in time (i.e., essentially optimal) for any initial condition with at least some degree of regularity, while there exists no uniform mixing rate for all measurable initial conditions.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video