# Robert V. Kohn : A Variational Perspective on Wrinkling Patterns in Thin Elastic Sheets: What sets the patterns seen in geometry-driven wrinkling?

The wrinkling of thin elastic sheets is very familiar: our skin
wrinkles, drapes have coarsening folds, and a sheet stretched
over a round surface must wrinkle or fold.

What kind of mathematics is relevant? The stable configurations of a
sheet are local minima of a variational problem with a rather special
structure, involving a nonconvex membrane term (which favors isometry)
and a higher-order bending term (which penalizes curvature). The bending
term is a singular perturbation; its small coefficient is the sheet
thickness squared. The patterns seen in thin sheets arise from energy
minimization -- but not in the same way that minimal surfaces arise
from area minimization. Rather, the analysis of wrinkling is an example
of "energy-driven pattern formation," in which our goal is to understand
the asymptotic character of the minimizers in a suitable limit (as the
nondimensionalized sheet thickness tends to zero).

What kind of understanding is feasible? It has been fruitful to focus
on how the minimum energy scales with sheet thickness, i.e. the "energy
scaling law." This approach entails proving upper bounds and
lower bounds that scale the same way. The upper bounds tend to be
easier, since nature gives us a hint. The lower bounds are more subtle,
since they must be ansatz-free; in many cases, the arguments used to
prove the lower bounds help explain "why" we see particular patterns.
A related but more ambitious goal is to identify the prefactor as well
as the scaling law; Ian Tobasco's striking recent work on geometry-driven
wrinkling has this character.

Lecture 1 will provide an overview of this topic (assuming no background
in elasticity, thin sheets, or the calculus of variations). Lecture 2 will
discuss some examples of tensile wrinkling, where identification of the
energy scaling law is intimately linked to understanding the local
length scale of the wrinkles. Lecture 3 will discuss our emerging
undertanding of geometry-driven wrinkling, where (as Tobasco has
shown) it is the prefactor not the scaling law that explains the
patterns seen experimentally.

**Category**: Gergen Lectures**Duration**: 01:34:42**Date**: March 21, 2019 at 3:10 PM**Views**: 267-
**Tags:**seminar, Gergen Lectures Seminar

## 0 Comments