# Louis Fostier : A model of oocyte population dynamics for fish oogenesis

We introduce and analyze a size-structured oocyte population model, with non local nonlinearities on recruitment, growth and mortality rates to take into account interactions between cells. We pay special attention to the form of the recruitment term, and its influence on the asymptotic behavior of the cell population.

This model is well-suited for representing oocyte population dynamics within the fish ovary. The nonlocal nonlinearities enable us to capture the diverse feedback mechanisms acting on the growth of oocytes of varying sizes and on the recruitment of new oocytes.

We firstly investigate the existence and uniqueness of global bounded solutions by transforming the partial differential equation into an equivalent system of integral equations, which can be solved using the Contraction Mapping Principle.

In a second step, we investigate the asymptotic behavior of the model. Under an additional assumption regarding the form of the growth rate, we can, with the use of a classical time-scaling transformation, reduce the study to that of a equation with linear growth speed and nonlinear inflow boundary condition. Using arguments from the theory of abstract semilinear Cauchy problems, we investigate the local stability of stationary solutions of this equation by reducing it to a characteristic equation involving the eigenvalues of the linearized problem around equilibrium states.

When the mortality rate is zero, the study of existence and stability of stationary solutions is simplified. Explicit calculations can be carried out in certain interesting cases.

**Category**: Mathematical Biology**Duration**: 59:29**Date**: March 22, 2024 at 11:55 AM**Views**: 48-
**Tags:**seminar, Mathematical Biology Seminar

## 0 Comments