Quicklists
Javascript must be enabled

Min Kang : Tropically Linear Interface Growth Models

We first discuss a general method to derive macroscopic laws from certain microscopic interactions that can be applied to a large class of particle systems. In particular we consider a broad class of systems that are linear in a special algebra, so-called tropical algebra. Some natural connections among the scaling limits of these random systems, the solutions to specific partial differential equations (Hamilton-Jacobi type) and combinatorial optimization problems have been noticed. If time allows, we further discuss a useful application of the variational formula (microscopic version of Hopf-Lax formula) to a well-known interacting particle system, totally asymmetric simple exclusion process.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video