# Kate Stange : Visualising the arithmetic of imaginary quadratic fields

Let $K$ be an imaginary quadratic field with ring of integers $\mathcal{O}_K$. The Schmidt arrangement of $K$ is the orbit of the extended real line in the extended complex plane under the Mobius transformation action of the Bianchi group $\operatorname{PSL}(2,\mathcal{O}_K)$. The arrangement takes the form of a dense collection of intricately nested circles. Aspects of the number theory of $\mathcal{O}_K$ can be characterised by properties of this picture: for example, the arrangement is connected if and only if $\mathcal{O}_K$ is Euclidean. I'll explore this structure and its connection to Apollonian circle packings. Specifically, the Schmidt arrangement for the Gaussian integers is a disjoint union of all primitive integral Apollonian circle packings. Generalizing this relationship to all imaginary quadratic $K$, the geometry naturally defines some new circle packings and thin groups of arithmetic interest.

**Category**: Number Theory**Duration**: 01:34:47**Date**: March 16, 2016 at 4:25 PM**Views**: 105-
**Tags:**seminar, Number Theory Seminar

## 0 Comments