Javascript must be enabled

Evangelia Gazaki : Torsion phenomena for zero-cycles on a product of curves over a number field



For a smooth projective variety X over an algebraic number field a conjecture of Bloch and Beilinson predicts that the kernel of the Abel-Jacobi map of X is a torsion group. When X is a curve, this follows by the Mordell-Weil theorem. In higher dimensions however there is hardly any evidence for this conjecture. In this talk I will focus on the case when X is a product of smooth projective curves and construct infinitely many nontrivial examples that satisfy a weaker form of the Bloch-Beilinson conjecture. This relies on a recent joint work with Jonathan Love.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video