# Yanir Rubinstein : Einstein metrics on Kahler manifolds

The Uniformization Theorem implies that any compact Riemann surface has a constant curvature metric. Kahler-Einstein (KE) metrics are a natural generalization of such metrics, and the search for them has a long and rich history, going back to Schouten, Kahler (30's), Calabi (50's), Aubin, Yau (70's) and Tian (90's), among others. Yet, despite much progress, a complete picture is available only in complex dimension 2. In contrast to such smooth KE metrics, in the mid 90's Tian conjectured the existence of KE metrics with conical singularities along a divisor (i.e., for which the manifold is `bent' at some angle along a complex hypersurface), motivated by applications to algebraic geometry and Calabi-Yau manifolds. More recently, Donaldson suggested a program for constructing smooth KE metrics of positive curvature out of such singular ones, and put forward several influential conjectures. In this talk I will try to give an introduction to Kahler-Einstein geometry and briefly describe some recent work mostly joint with R. Mazzeo that resolves some of these conjectures. One key ingredient is a new C^{2,\alpha} a priori estimate and continuity method for the complex Monge-Ampere equation. It follows that many algebraic varieties that may not admit smooth KE metrics (e.g., Fano or minimal varieties) nevertheless admit KE metrics bent along a simple normal crossing divisor.

**Category**: Geometry and Topology**Duration**: 01:00:48**Date**: April 28, 2012 at 2:30 PM**Views**: 232-
**Tags:**seminar, Geometry Festival Seminar

## 0 Comments