# Lisa Fauci : Waving rings and swimming in circles: some lessons learned through biofluiddynamics

Dinoflagellates swim due to the action of two eucaryotic flagella - a trailing, longitundinal flagellum that propagates planar waves, and a transverse flagellum that propagates helical waves. The transverse flagellum wraps around the cell in a plane perpendicular to the trailing flagellum, and is thought to provide both forward thrust along with rotational torque. Motivated by the intriguing function of this transverse flagellum, we study the fundamental fluid dynamics of a helically-undulating ring in a viscous fluid. We contrast this biofluiddynamic study, where the kinematics of the waveform are taken as given, with a model of mammalian sperm hyperactivated motility. Here, our goal is to examine how the complex interplay of fluid dynamics, biochemistry, and elastic properties of the flagellum give rise to the swimming patterns observed.

**Category**: Mathematical Biology**Duration**: 01:29:55**Date**: February 11, 2011 at 11:55 AM**Views**: 96-
**Tags:**seminar, Mathematical Biology Seminar

## 0 Comments