Quicklists
Javascript must be enabled

Yifei Lou : Nonconvex Approaches in Data Science (Aug 3, 2018 2:55 PM)

Although “big data” is ubiquitous in data science, one often faces challenges of “small data,” as the amount of data that can be taken or transmitted is limited by technical or economic constraints. To retrieve useful information from the insufficient amount of data, additional assumptions on the signal of interest are required, e.g. sparsity (having only a few non-zero elements). Conventional methods favor incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent. I will present a nonconvex approach that works particularly well in the coherent regime. I will also address computational aspects in the nonconvex optimization. Various numerical experiments have demonstrated advantages of the proposed method over the state-of-the-art. Applications, ranging from super-resolution to low-rank approximation, will be discussed.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video