Quicklists
Javascript must be enabled

Daniel Linder : Parameter Inference in Biochemical Reaction Networks (Nov 13, 2015 11:55 AM)

Systems biologists seek to understand the higher-level organizational properties that a proposed system exhibits from the interactions of its many lower level components. It is then typically beneficial to learn, in a statistical sense, the nature of these interactions from experimental data; this is sometimes called reverse engineering. In this talk I will discuss some methods found in the literature for learning the kinetic parameters from stochastic system trajectories measured at discrete time points. I will also discuss estimating the system topology, or network structure, with the stoichiometric algebraic statistical model and detail its relationship with kinetic parameter estimation. Finally, I will discuss some ongoing work aimed at improving both parameter estimation and system topology estimation.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video