Quicklists
Javascript must be enabled

Vera Vértesi : Knots in contact 3--manifolds

In this talk I will give a purely combinatorial description of Knot Floer Homology for knots in the three-sphere (Manolescu-Ozsváth-Szabó-Thurston). In this homology there is a naturally associated invariant for transverse knots. This invariant gives a combinatorial but still an effective way to distinguish transverse knots (Ng-Ozsváth-Thurston). Moreover it leads to the construction of an infinite family of non-transversely simple knot-types (Vértesi).

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video