Quicklists
Javascript must be enabled

Ziva Myer : Product Structures for Legendrian Submanifolds with Generating Families

In contact topology, invariants of Legendrian submanifolds in 1-jet spaces have been obtained through a variety of techniques. I will discuss how I am enriching one Morse-theoretic invariant, Generating Family Cohomology, to an A-infinity algebra by constructing product maps. The construction uses moduli spaces of Morse flow trees: spaces of intersecting gradient trajectories of functions whose critical points encode Reeb chords of the Legendrian submanifold. I will focus my talk on the construction of a 2-to-1 product and discuss how it lays the foundation for the A-infinity algebra.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video