Lydia Bilinsky : A Mathematical Model of Glutamate and Glutamine Metabolism in the Rat: Implications for Glutathione Production (Apr 11, 2014 11:55 AM)
Glutathione (GSH), a tripeptide formed from glutamate, cysteine, and
glycine, is arguably the most important antioxidant in the body. NAPQI, a
byproduct of acetaminophen (APAP) metabolism which is toxic to liver
cells, is neutralized by GSH. Although produced in great quantity by the
liver, in cases of APAP overdose demand for GSH can outstrip supply,
causing liver failure. Currently, patients presenting to the ER with APAP
overdose are given an infusion of cysteine since it is believed to be the
rate-limiting amino acid in GSH synthesis, however, there is evidence that
under some circumstances glutamate can become rate-limiting. Complicating
the issue is that in most hepatocytes, glutamate is not absorbable from
blood plasma but is formed from glutamine, which is produced in large
amounts by the skeletal muscle. In order to develop better rescue
protocols for APAP overdose, we have developed a mathematical model of
glutamate and glutamine metabolism in the rat. We have also investigated
how model parameters should change in the case of increased cortisol
production, such as occurs during sepsis, trauma, burns, and other
pathological states; the cortisol-stressed state has been studied in rats
by giving them dexamethasone. We compare model predictions with
experimental data for the normal, healthy rat and dexamethasone-stressed
rat. Biological parameters are taken from the literature wherever possible.
- Category: Mathematical Biology
- Duration: 01:14:48
- Date: April 11, 2014 at 11:55 AM
- Views: 107
- Tags: seminar, Mathematical Biology Seminar
0 Comments