Christel Hohenegger : Small scale stochastic dynamics: Application for near-weall velocimetry measurements (Mar 5, 2007 4:25 PM)
Fluid velocities and Brownian effects at nanoscales in the near-wall r egion of microchannels can be experimentally measured in an image plane parallel to the wall, using for example, an evanescent wave illumination technique combi ned with particle image velocimetry [R. Sadr et al., J. Fluid Mech. 506, 357-367 (2004)]. Tracers particles are not only carried by the flow, but they undergo r andom fluctuations, the details of which are affected by the proximity of the wa ll. We study such a system under a particle based stochastic approach (Langevin) . We present the modeling assumptions and pay attention to the details of the si mulation of a coupled system of stochastic differential equations through a Mils tein scheme of strong order of convergence 1. Then we demonstrate that a maximum likelihood algorithm can reconstruct the out-of-plane velocity profile, as spec ified velocities at multiple points, given known mobility dependence and perfect mean measurements. We compare this new method with existing cross-correlation t echniques and illustrate its application for noisy data. Physical parameters are chosen to be as close as possible to the experimental parameters.
- Category: Applied Math and Analysis
- Duration: 01:34:47
- Date: March 5, 2007 at 4:25 PM
- Views: 159
- Tags: seminar, Applied Math And Analysis Seminar
0 Comments