# Christel Hohenegger : Small scale stochastic dynamics: Application for near-weall velocimetry measurements

Fluid velocities and Brownian effects at nanoscales in the near-wall r egion of microchannels can be experimentally measured in an image plane parallel to the wall, using for example, an evanescent wave illumination technique combi ned with particle image velocimetry [R. Sadr et al., J. Fluid Mech. 506, 357-367 (2004)]. Tracers particles are not only carried by the flow, but they undergo r andom fluctuations, the details of which are affected by the proximity of the wa ll. We study such a system under a particle based stochastic approach (Langevin) . We present the modeling assumptions and pay attention to the details of the si mulation of a coupled system of stochastic differential equations through a Mils tein scheme of strong order of convergence 1. Then we demonstrate that a maximum likelihood algorithm can reconstruct the out-of-plane velocity profile, as spec ified velocities at multiple points, given known mobility dependence and perfect mean measurements. We compare this new method with existing cross-correlation t echniques and illustrate its application for noisy data. Physical parameters are chosen to be as close as possible to the experimental parameters.

**Category**: Applied Math and Analysis**Duration**: 01:34:47**Date**: March 5, 2007 at 4:25 PM**Views**: 159-
**Tags:**seminar, Applied Math And Analysis Seminar

## 0 Comments