Quicklists
Javascript must be enabled

Lin Lin : Elliptic preconditioner for accelerating the self consistent field iteration of Kohn-Sham density functional theory (Feb 18, 2013 4:25 PM)

Kohn-Sham density functional theory (KSDFT) is the most widely used electronic structure theory for molecules and condensed matter systems. Although KSDFT is often stated as a nonlinear eigenvalue problem, an alternative formulation of the problem, which is more convenient for understanding the convergence of numerical algorithms for solving this type of problem, is based on a nonlinear map known as the Kohn-Sham map. The solution to the KSDFT problem is a fixed point of this nonlinear map. The simplest way to solve the KSDFT problem is to apply a fixed point iteration to the nonlinear equation defined by the Kohn-Sham map. This is commonly known as the self-consistent field (SCF) iteration in the condensed matter physics and chemistry communities. However, this simple approach often fails to converge. The difficulty of reaching convergence can be seen from the analysis of the Jacobian matrix of the Kohn-Sham map, which we will present in this talk. The Jacobian matrix is directly related to the dielectric matrix or the linear response operator in the condense matter community. We will show the different behaviors of insulating and metallic systems in terms of the spectral property of the Jacobian matrix. A particularly difficult case for SCF iteration is systems with mixed insulating and metallic nature, such as metal padded with vacuum, or metallic slabs. We discuss how to use these properties to approximate the Jacobian matrix and to develop effective preconditioners to accelerate the convergence of the SCF iteration. In particular, we introduce a new technique called elliptic preconditioner, which unifies the treatment of large scale metallic and insulating systems at low temperature. Numerical results show that the elliptic preconditioner can effectively accelerate the SCF convergence of metallic systems, insulating systems, and systems of mixed metallic and insulating nature. (Joint work with Chao Yang)

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video