Quicklists
Javascript must be enabled

Christoph Ortner : Multi-scale simulation of crystal defects

PART 1: I will construct a mathematical model of a defect embedded in an infinite homogeneous crystal. I will then establish a regularity result for minimisers, which given the crucial information on which approximation schemes are based. As an elementary application of this framework I will prove convergence rates for two computational schemes: (1) clamped far-field and (2) coupling to harmonic far-field model.
PART 2: The conditions under which the theory of Part 1 holds are separability and locality of the total energy. In Part 2 I will show how for a tight-binding model (a minimalistic electronic structure model) these two condition arise. This analysis raises some interesting (open) questions.
PART 3: Finally, I will use the theory developed in PART 1 and PART 2 to construct and analyse a new family of QM/MM embedding schemes with rigorous error estimates.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video