Christoph Ortner : Multi-scale simulation of crystal defects
PART 1: I will construct a mathematical model of a defect embedded in an infinite homogeneous crystal. I will then establish a regularity result for minimisers, which given the crucial information on which approximation schemes are based. As an elementary application of this framework I will prove convergence rates for two computational schemes: (1) clamped far-field and (2) coupling to harmonic far-field model.
PART 2: The conditions under which the theory of Part 1 holds are separability and locality of the total energy. In Part 2 I will show how for a tight-binding model (a minimalistic electronic structure model) these two condition arise. This analysis raises some interesting (open) questions.
PART 3: Finally, I will use the theory developed in PART 1 and PART 2 to construct and analyse a new family of QM/MM embedding schemes with rigorous error estimates.
- Category: Applied Math and Analysis
- Duration: 01:44:48
- Date: March 24, 2016 at 9:55 AM
- Views: 110
- Tags: seminar, Applied Math And Analysis Seminar
0 Comments