Javascript must be enabled

Anja Sturm : Coexistence and convergence for voter model with selection

We consider variations of the usual voter model, which favor types that are locally less common. Such voter models with selection are dual to systems of branching annihilating random walks that are parity preserving. We consider coexistence of types in the voter models which is related to the survival of particles in the branching annihilating random walk. We find conditions for the uniqueness of a homogeneous coexisting invariant law as well as for convergence to this law from homogeneous and coexisting initial laws. For a particular one dimensional model we also show a complete convergence result for any initial condition. This is based on comparison with oriented percolation of the associated branching annihilating random walk.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video