Quicklists
Javascript must be enabled

Jonah Blasiak : Kronecker coefficients for one hook shape

The Kronecker coefficient $g_{\lambda \mu \nu}$ is the multiplicity of an irreducible $\mathcal{S}_n$-module $M_\nu$ in the tensor product $M_\lambda \otimes M_\mu$. A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. We give such a formula in the case that one of the partitions is a hook shape. Our main tool is Haiman's mixed insertion, which is a generalization of Schensted insertion to colored words. Prior familiarity with combinatorics of words and tableaux will not be assumed.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video