Quicklists
Javascript must be enabled

Nicolas Addington : Cubic fourfolds and K3 surfaces

Cubic fourfolds behave in many ways like K3 surfaces. Certain cubics -- conjecturally, the ones which are rational -- have K3s associated to them geometrically. Hassett has studied the cubics with K3s associated to them at the level of Hodge theory, and Kuznetsov has studied the cubics with K3s associated to them at the level of derived categories. These two notions of having an associated K3 should coincide. We prove they coincide generically. That is, Hassett's cubics form a countable union of irreducible Noether-Lefschetz divisors in moduli space, and Kuznetsov's cubics are a dense subset of these, forming a non-empty, Zariski open subset in each divisor.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video