Quicklists
Javascript must be enabled

Gautam Iyer : Winding of Brownian trajectories and heat kernels on covering spaces

root

96 Views

We study the long time behaviour of the heat kernel on Abelian covers of compact Riemannian manifolds. For manifolds without boundary work of Lott and Kotani-Sunada establishes precise long time asymptotics. Extending these results to manifolds with boundary reduces to a cute eigenvalue minimization problem, which we resolve for a Dirichlet and Neumann boundary conditions. We will show how these results can be applied to studying the ``winding'' / ``entanglement'' of Brownian trajectories in Riemannian manifolds.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video