# Jacob Tsimerman : Recovering elliptic curves from their p-torsion

(joint w/ B.Bakker) For an elliptic curve E over a field k, the p-torsion E[p] gives a 2-dimensional representation of the Galois group G_k over F_p. For k=Q and p>13, the Frey-Mazur conjecture famously states that one can recover the isogeny class of E from the representaiton E[p]. We state and prove a direct analogue of this question over function fields of complex algebraic curves. Specifically, for any complex algebraic curve C, let k(C) be its field of rational functions. Then there exists a constant A(C), such that for all primes p>A(C), isogeny classes of elliptic curves E over k(C) can be recovered from E[p]. Moreover, we show that A(C) can be made to depend only on the gonality of C, which can be thought of as the analogous notion of degree for number fields. The study of this question will lead us into the realm of moduli spaces and hyperbolic geometry. The use of the latter means that, unfortunately, these methods don't apply in finite characteristic.

**Category**: Number Theory**Duration**: 01:19:32**Date**: April 16, 2014 at 1:55 PM**Views**: 144-
**Tags:**seminar, UNC-Duke Number Theory Seminar Seminar

## 0 Comments