Quicklists
Javascript must be enabled

Maria Gordina : Gaussian type analysis on infinite-dimensional Heisenberg groups

This is a joint work with B.Driver. The groups in question are modeled on an abstract Wiener space. Then a group Brownian motion is defined, and its properties are studied in connection with the geometry of this group. The main results include quasi-invariance of the heat kernel measure, log Sobolev inequality (following a bound on the Ricci curvature), and the Taylor isomorphism to the corresponding Fock space. The latter is a version of the Ito-Wiener expansion in the non-commutative setting.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video