Quicklists
Javascript must be enabled

Michael Shearer : Continuum Models of Granular Flow

Continuum models of the flow of granular materials in a hopper admit so-called radial solutions. These describe steady flows that appear realistic, and have been used extensively to design commercial hoppers. However, numerical results demonstrate that these solutions may not be robust to perturbation. Moreover, the time dependent equations are (notoriously) ill-posed. In this talk, I describe preliminary research designed to investigate the extent to which steady solutions may be used to represent granular flow. Using a combination of analysis and numerical experiments, we have explored simple models that are linearly ill posed. While there may be a stable steady state, it is a solution of a discretized continuum model, rather than the original equations. Moreover, the survival time of transients is inversely related to the mesh width, suggesting that the continuum limit is meaningless. While these results are not intended to invalidate the radial solutions, they do raise serious concerns about continuum modeling, and the possibility of designing a robust code that can be used to simulate a variety of granular flows.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video