Quicklists
Javascript must be enabled

Eric Corwin : Making a Two-Dimensional Thermal Ideal Gas by Shaking Your Breakfast (Mar 20, 2018 2:55 PM)

Active, driven systems as diverse as flocking starlings, swarming bacteria, and vibrating granular beds are by definition non-equilibrium, lacking a well defined thermal temperature that characterizes their dynamics. Because of this, the creation of a coherent non-equilibrium statistical mechanics has proven elusive, and it remains unclear whether, for any non-equilibrium system, a meaningful effective temperature exists. We have constructed an active, driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal ideal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature, diffusion constant, and coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity this system serves as a starting point for direct experimental investigation of non-equilibrium statistical mechanics, much as the ideal gas is the starting point for equilibrium statistical mechanics.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video