Quicklists
Javascript must be enabled

Colleen Mitchell : Models of cardiac caveolae reveal a novel mechanism for delayed repolarization and arrhythmia.

Recent studies of cholesterol-rich membrane microdomains, called caveolae, reveal that caveolae are reservoirs of recruitable sodium ion channels. Caveolar channels constitute a substantial and previously unrecognized source of sodium current in cardiac cells. In this talk, I will present a family of DE and PDE models to investigate caveolar sodium currents and their contributions to cardiac action potential morphology. We show that the b-agonist-induced opening of caveolae may have substantial impacts on peak overshoot, maximum upstroke velocity, and conduction velocity. Additionally, we show that prolonged action potentials and the formation of potentially arrhythmogenic afterdepolarizations, can arise if caveolae open intermittently throughout the action potential.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video