Javascript must be enabled

Gang Tian : Geometry and Analysis of low-dimensional manifolds

In this series of talks, I will focus on geometry and analysis of manifolds of dimension 2, 3 or 4. The first talk is a general introduction of this series. I will start the talk by reviewing some classical theories on Riemann surfaces and their recent variations in geometric analysis. Then we survey some recent progress on 3- and 4-manifolds. I hope that this talk will show some clues how geometric equations can be applied to studying geometry of underlying spaces. In the second talk, I will discuss recent works on the Ricci flow and its application to the geometrization of 3-manifolds, in particular, I will briefly discuss Perelman's work towards the Poincare conjecture. In last talk, I will discuss geometric equations in dimension 4 and how they can be applied to studying geoemtry of underlying 4-spaces. Some recent results will be discussed and some open problems will be given.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video