Quicklists
Javascript must be enabled

Guillaume Lajoie : Artificially-induced synaptic plasticity in motor cortex: a theoretical model of a bidirectional brain-computer interface

Experiments on macaque monkeys show that spike-triggered stimulation performed by a Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen synaptic connections between distant neural sites in Motor Cortex (MC) and even between MC and spinal cord, with changes that last several days. Here, a neural implant records from some neurons in MC and electrically stimulates others after set delays. The working hypothesis is that this stimulation procedure, which interacts with the very fast spiking activity of cortical circuits (on the order of milliseconds), induces changes mediated by synaptic plasticity mechanisms on much longer timescales (hours and days). The field of online, closed-loop BBCI's is rapidly evolving, with applications ranging from a science-oriented tool to clinical treatments of motor injuries. However, with the enhanced capability of novel devices that can record and stimulate an ever-growing number of neural sites comes growing complexity. It is therefore crucial to develop a theoretical understanding of the effects of closed-loop artificial stimulation in the highly recurrent neural circuits found in cortex, and how such protocols affect functional cotex-to-muscle mappings across a range of timescales. In parallel with ongoing experiments, we are developing a mathematical model of recurrent MC networks with probabilistic spiking mechanisms and spike-time-dependent plastic synapses (STDP) capable of capturing both neural and synaptic activity statistics relevant to BBCI protocols. This model successfully reproduces key experimental results and we use analytical derivations to predict optimal operational regimes for BBCIs. We make experimental predictions concerning the efficacy of spike-triggered stimulation in different regimes of cortical activity such as awake behaving states or sleep. Importantly, this work provides a first step toward a theoretical framework aimed at the design and development of next-generations applications of BBCI's.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video