Quicklists
Javascript must be enabled

Paolo E. Barbano : A Novel semi-supervised classifier for Optical Images

Given a number of labeled and unlabeled images, it is possible to determine the class membership of each unlabeled image by creating a sequence of such image transformations that connect it, through other unlabeled images, to a labeled image. In order to measure the total transformation, a robust and reliable metric of the path length is proposed, which combines a local dissimilarity between consecutive images along the path with a global connectivity-based metric. For the local dissimilarity we use a symmetrized version of the zero-order image deformation model (IDM) proposed by Keysers et al. For the global distance we use a connectivity-based metric proposed by Chapelle and Zien in [2]. Experimental results on the MNIST benchmark indicate that the proposed classifier out-performs current state-of-the-art techniques, especially when very few labeled patterns are available.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video