Quicklists
Javascript must be enabled

Jayce Getz : Hilbert modular generating functions with coefficients in intersection homology (Oct 24, 2007 4:25 PM)

In a seminal Inventiones 1976 paper, Hirzebruch and Zagier produced a set of cycles on certain Hilbert modular surfaces whose intersection numbers are the Fourier coefficients of elliptic modular forms with nebentypus. Their result can be viewed as a geometric manifestation of the Naganuma lift from elliptic modular forms to Hilbert modular forms. We discuss a general analogue of this result where the real quadratic extension is replaced by an arbitrary quadratic extension of totally real fields. Our result can be viewed as a geometric manifestation of quadratic base change for GL_2 over totally real fields. (joint work with Mark Goresky).

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video