Javascript must be enabled

Will Donovan : Noncommutative deformations and the birational geometry of 3-folds

I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. I will give a brief introduction to noncommutative deformations, and explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations. This construction yields new information about the (commutative) geometry of the 3-fold, and provides a new tool to differentiate between flops. As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve, relating a Fourier-Mukai flop-flop functor and a spherical twist about the universal family over the noncommutative deformation algebra. I will also explain work in progress applying this approach to other geometric situations, and to higher dimensions.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video