Javascript must be enabled

Lillian Pierce : Burgess bounds for short mixed character sums

A celebrated result of Burgess proves nontrivial bounds for short multiplicative character sums. In general, bounds for short character sums have utility in a wide range of problems in number theory, and it would be highly desirable to extend Burgess’s method to apply to more general character sums. This talk presents new work in this direction, joint with Roger Heath-Brown, that proves nontrivial bounds for short mixed character sums in which the additive character is evaluated at a real-valued polynomial. Our approach, via a version of the Burgess method, includes a novel application of the recent results of Wooley on the Vinogradov mean value theorem.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video