Quicklists
Javascript must be enabled

Benjamin McKenna : Injective norm of real and complex random tensors (Nov 7, 2024 3:10 PM)

The injective norm is a natural generalization to tensors of the operator norm of a matrix. In quantum information, the injective norm is one important measure of genuine multipartite entanglement of quantum states, where it is known as the geometric entanglement. We give a high-probability upper bound on the injective norm of real and complex Gaussian random tensors, corresponding to a lower bound on the geometric entanglement of random quantum states. The proof is based on spin-glass methods, the Kac—Rice formula, and recent progress coming from random matrices. Joint work with Stéphane Dartois.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video