Quicklists
Javascript must be enabled

Chris Hall : Sequences of curves with growing gonality

root

83 Views

Given a smooth irreducible complex curve $C$, there are several isomorphism invariants one can attach to $C$. One invariant is the genus of $C$, that is, the number of handles in the corresponding Riemann surface. A subtler invariant is the gonality of $C$, that is, the minimal degree of a dominant map from $C$ of $\mathbb{P}^1$. A lower bound for either invariant has diophantine consequences when $C$ can be defined over a number field, but the ability to give non-trivial lower bounds depends on how $C$ is presented. In this talk we will consider a sequence $C_1,C_2,\ldots$ of finite unramified covers of $C$ and give spectral criteria for the gonality of $C_n$ to tend to infinity.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video