Quicklists
Javascript must be enabled

Jiequn Han : Deep Learning-Based Numerical Methods for High-Dimensional Parabolic PDEs and Forward-Backward SDEs

Developing algorithms for solving high-dimensional partial differential equations (PDEs) and forward-backward stochastic differential equations (FBSDEs) has been an exceedingly difficult task for a long time, due to the notorious difficulty known as the curse of dimensionality. In this talk we introduce a new type of algorithms, called "deep BSDE method", to solve general high-dimensional parabolic PDEs and FBSDEs. Starting from the BSDE formulation, we approximate the unknown Z-component by neural networks and design a least-squares objective function for parameter optimization. Numerical results of a variety of examples demonstrate that the proposed algorithm is quite effective in high-dimensions, in terms of both accuracy and speed. We furthermore provide a theoretical error analysis to illustrate the validity and property of the designed objective function.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video