Quicklists
Javascript must be enabled

spacetime Laplace equation on initial data sets for Einstein’s equations

This talk will consider a ’spacetime Laplace operator’ on an initial data set for the Einstein equations. This operator reflects the geometry of the underlying manifold in a manner similar to the Dirac operator appearing in Witten’s proof of the Positive Mass Theorem. By analyzing linear-growth spacetime harmonic functions and their level sets, we obtain a rather approachable refinement of the Positive Mass Theorem for asymptotically flat 3-dimensional initial data sets. Applications to asymptotically hyperbolic initial data sets are also considered. The work I will discuss includes collaborations with Hugh Bray, Sven Hirsch, Marcus Khuri, Daniel Stern, and Yiyue Zhang.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Please login to comment