Quicklists
Javascript must be enabled

Jonathan Hermon : Mixing and hitting times - theory and applications

We present a collection of results, based on a novel operator maximal inequality approach, providing precise relations between the time it takes a Markov chain to converge to equilibrium and the time required for it to exit from small sets. These refine results of Aldous and Lovasz & Winkler. Among the applications are: (1) A general characterization of an abrupt convergence to equilibrium phenomenon known as cutoff. Specializing this to Ramanujan graphs and trees. (2) Proving that the return probability decay is not geometrically robust (resolving a problem of Aldous, Diaconis - Saloff-Coste and Kozma). (3) Random walk in evolving environment

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video