Quicklists
Javascript must be enabled

Dan Rutherford : Augmentations and immersed Lagrangian fillings (Feb 11, 2019 3:10 PM)

This is joint work with Y. Pan that applies previous joint work with M. Sullivan. Let $\Lambda \subset \mathbb{R}^{3}$ be a Legendrian knot with respect to the standard contact structure. The Legendrian contact homology (LCH) DG-algebra, $\mathcal{A}(\Lambda)$, of $\Lambda$ is functorial for exact Lagrangian cobordisms in the symplectization of $\mathbb{R}^3$, i.e. a cobordism $L \subset \mathit{Symp}(\mathbb{R}^3)$ from $\Lambda_-$ to $\Lambda_+$ induces a DG-algebra map, $f_L:\mathcal{A}(\Lambda_+) \rightarrow \mathcal{A}(\Lambda_-).$ In particular, if $L$ is an exact Lagrangian filling ($\Lambda_-= \emptyset$) the induced map is an augmentation $\epsilon_L: \mathcal{A}(\Lambda_+) \rightarrow \mathbb{Z}/2.$ In this talk, I will discuss an extension of this construction to the case of immersed, exact Lagrangian cobordisms based on considering the Legendrian lift $\Sigma$ of $L$. When $L$ is an immersed, exact Lagrangian filling a choice of augmentation $\alpha$ for $\Sigma$ produces an induced augmentation $\epsilon_{(L, \alpha)}$ for $\Lambda_+$. Using the cellular formulation of LCH, we are able to show that any augmentation of $\Lambda$ may be induced by such a filling.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video