Quicklists
Javascript must be enabled

Douglas Zhou : Spatiotemporal integration of synaptic inputs in neurons: computational modeling, analysis and experiments (Apr 28, 2016 4:25 PM)

A neuron receives thousands of synaptic inputs from other neurons and integrates them to process information. Many experimental results demonstrate this integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization. Based on asymptotic analysis of an idealized cable model, we derive a bilinear spatiotemporal integration rule for a pair of time-dependent synaptic inputs. Note that the above rule is obtained from idealized models. However, we have confirmed this rule both in simulations of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. Our results demonstrate that the integration of multiple synaptic inputs can be decomposed into the sum of all possible pairwise integration with each paired integration obeying a bilinear rule.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video