Quicklists
Javascript must be enabled

Rongjie Lai : Understanding Manifold-structured Data via Geometric Modeling and Learning (Apr 25, 2018 11:55 AM)

Analyzing and inferring the underlying global intrinsic structures of data from its local information are critical in many fields. In practice, coherent structures of data allow us to model data as low dimensional manifolds, represented as point clouds, in a possible high dimensional space. Different from image and signal processing which handle functions on flat domains with well-developed tools for processing and learning, manifold-structured data sets are far more challenging due to their complicated geometry. For example, the same geometric object can take very different coordinate representations due to the variety of embeddings, transformations or representations (imagine the same human body shape can have different poses as its nearly isometric embedding ambiguities). These ambiguities form an infinite dimensional isometric group and make higher-level tasks in manifold-structured data analysis and understanding even more challenging. To overcome these ambiguities, I will first discuss modeling based methods. This approach uses geometric PDEs to adapt the intrinsic manifolds structure of data and extracts various invariant descriptors to characterize and understand data through solutions of differential equations on manifolds. Inspired by recent developments of deep learning, I will also discuss our recent work of a new way of defining convolution on manifolds and demonstrate its potential to conduct geometric deep learning on manifolds. This geometric way of defining convolution provides a natural combination of modeling and learning on manifolds. It enables further applications of comparing, classifying and understanding manifold-structured data by combing with recent advances in deep learning.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video