Javascript must be enabled

Benjamin Bakker : o-minimal GAGA and applications to Hodge theory

Hodge structures on cohomology groups are fundamental invariants of algebraic varieties; they are parametrized by quotients $D/\Gamma$ of period domains by arithmetic groups. Except for a few very special cases, such quotients are never algebraic varieties, and this leads to many difficulties in the general theory. We explain how to partially remedy this situation by equipping $D/\Gamma$ with an o-minimal structure in which any period map is definable. The algebraicity of Hodge loci is an immediate consequence via a theorem of Peterzil--Starchenko. We further prove a general GAGA type theorem in the definable category, and deduce some finer algebraization results. This is joint work with Y. Brunebarbe, B. Klingler, and J.Tsimerman.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video