Quicklists
Javascript must be enabled

Nan Wu : Length of a shortest closed geodesic in manifolds of dimension 4 (Jan 22, 2018 3:10 PM)

In this talk, we show that for any closed 4-dimensional simply-connected Riemannian manifold $M$ with Ricci curvature $|Ric| \leq 3$, volume $vol(M)>v>0$ and diameter $diam(M) \leq D$, the length of a shortest closed geodesic on $M$ is bounded by a function $F(v,D)$ . The proof of this result is based on the diffeomorphism finiteness theorem for the manifolds satisfying above conditions proved by J. Cheeger and A. Naber. This talk is based on the joint work with Zhifei Zhu.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video