Quicklists
Javascript must be enabled

Robert Lipshitz : Planar grid diagrams and bordered Floer homology (Apr 7, 2009 2:25 PM)

Heegaard Floer homology, a kind of (3+1)-dimensional field theory, associates chain complexes to 3-manifolds and chain maps to 4-manifolds with boundary. These complexes and maps are defined by counting holomorphic curves, and are hard to compute. Bordered Floer homology extends Heegaard Floer theory one dimension lower, assigning algebras to surfaces and differential modules to 3-manifolds with (parameterized) boundary. After introducing the bordered Floer framework, we will illustrate its construction in a toy case where it is explicit and combinatorial: planar grid diagrams. This is joint work with Peter Ozsvath and Dylan Thurston.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video