# Chris Henderson : Propagation in a non-local reaction-diffusion equation

The first reaction-diffusion equation developed and studied is the Fisher-KPP equation. Introduced in 1937, this population-dynamics model accounts for the spatial spreading and growth of a species. Various generalizations of this model have been studied in the eighty years since its introduction, including a model with non-local reaction for the cane toads of Australia introduced by Benichou et. al. I will begin the talk by giving an extended introduction on the Fisher-KPP equation and the typical behavior of its solutions. Afterwards I will describe the new model for the cane toads equations and give new results regarding this model. In particular, I will show how the model may be viewed as a perturbation of a local equation using a new Harnack-type inequality and I will discuss the super-linear in time propagation of the toads. The talk is based on a joint work with Bouin and Ryzhik.

**Category**: Applied Math and Analysis**Duration**: 01:34:49**Date**: November 23, 2015 at 4:25 PM**Views**: 146-
**Tags:**seminar, Applied Math And Analysis Seminar

## 0 Comments