Javascript must be enabled

Christina Tonnesen-Friedman : Canonical classes on admissible bundles

For each K¨ahler class on a compact K¨ahler manifold there is a lower bound of the Calabi functional, which we call the ``potential energy''. Fixing the volume and letting the K¨ahler classes vary, the energy defines a functional which may be studied in it?s own right. Any critical point of the energy functional is then a K¨ahler class whose extremal K¨ahler metrics (if any) are so-called strongly extremal metrics. We take the well-studied case of Hirzebruch surfaces and generalize it in two different directions; along the dimension of the base and along the genus of the base. In the latter situation we are able to give a very concrete description of the corresponding dynamical system (as defined first by S. Simanca and L. Stelling). The talk is based on work in progress with Santiago Simanca.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video