Quicklists
Javascript must be enabled

Jürgen Klüners : The negative Pell equation and the Cohen-Lenstra heuristic

root

120 Views

For a (squarefree) integer d the negative Pell equation is given by: X^2 - d Y^2 = -1. It is easy to see that this equation has no solution over the integers, if d is negative or d is congruent to 3 modulo 4. In this talk we would like to study the asymptotic behavior of integers d such that this equation is solvable. This question is related to the behavior of the class group of the quadratic field generated by a square root of d. The distribution of those class groups is described by the Cohen-Lenstra heuristics.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video